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Stability of plane Poiseuille flow to periodic disturbances 
of finite amplitude in the vicinity of the neutral curve 

By CHAIM L. PEKERIS A N D  BORIS SHKOLLER 
Department of Applied Mathematics, The Weizmann Institute, Rehovoth, Israel 

(Received 17 August 1966) 

Stuart (1960) has developed a theory of the stability of plane Poiseuille flow to 
periodic disturbances of finite amplitude which, in the neighbourhood of the 
neutral curve, leads to an equation of the Landau (1944) type for the amplitude 
A of the disturbance: dplzpt = k l ~ ~ l z - q ~ 1 4 .  

If k, is positive in the supercritical region (R > R,) where L, is positive, then, 
according to Stuart, there is a possibility of the existence of periodic solutions of 
finite amplitude which asymptotically approach a constant value of (L,/k,)*. We 
have evaluated the coefficient k, and found that there indeed exists a zone in the 
(a ,  22)-plane where it is positive. This is the zone inside the dashed curve shown 
in figure 1, with the region of instability predicted by the linear theory included 
inside the ‘neutral curve ’. Stuart’s theory and Eckhaus’s generalization thereof 
could apply in the overlapping zone just above the lower branch of the neutral 
curve. 

1. Introduction 
In  his analysis of the stability of plane Poiseuille flow to periodic disturbances 

of finite amplitude, Stuart (1958, 1960) shows that the conjecture of Landau 
(1944), that the square of the amplitude ( ( A  I ,) of a finite disturbance is governed 
by an equation of the type 

d l A p / d t  = k11A(2-lc,lA(4, (1) 

can be derived on the basis of the Navier-Stokes equations. According to Stuart, 
(1) is an approximation valid in a region in the (a, R)-plane which is close to the 
‘neutral curve’. Here, a denotes the wave-number and R the Reynolds number. 
This work was extended by Watson (1960) and by Eckhaus (1965), and a detailed 
exposition of the theory is given in the latter’s memoir. The constant k, is related 
to the exponential amplification-factor exp ( i k l t )  of the linear theory, as given by 
the Orr-Sommerfeld equation. In order to determine the constant k2 (real) one 
has to solve a system of coupled ordinary differential equations, which so far has 
not been carried out. 

An evaluation of k, is of interest, because the nature of the solution of (1) 
depends on its sign. If k, > 0,  then for R > R,, when k,  > 0, there evidently 
exists a solution for which 

dlA12/dt+O, (t-tco), (2) 

(3) I A I -+ ( L l / U .  
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This means that the amplitude of a periodic disturbance, which according to the 
linear theory would be expected to grow exponentially, actually approaches a 
constant value due to finite-amplitude effects. For k, < 0 and R < R,, when 
kl < 0, equation (1) shows that d ( A I 2 / d t  can vanish for a particular value of the 
amplitude given by (3). This implies that the neutral curve is shifted to smaller 
Reynolds numbers by an amount depending on the magnitude of the disturbance. 
Such an effect was discussed by Meksyn & Stuart (1951). 

2. Theory of a periodic disturbance of finite amplitude 
We shall recapitulate here the principal steps in Stuart’s analysis, and shall 

follow the exposition given by Eckhaus (1965). For the plane Poiseuille flow, 
where the Iaminar velocities (C, V) are given by 

(4) 

= a$/ay, v = - a+px, ( 5 )  

9 = c f,(y, t )  e--ianz, f-,(y, t )  = LJY, t ) ,  (6) 

given by L = 2nr/a, ( 7 )  

- 
u = l - y 2  ( - l < y < l ) ,  V = O ,  

let the perturbation in the velocities (u, v) be derived from a stream-function $ 

We assume that the perturbation is periodic in x: 
m 

%=-a 

the bar denoting the complex conjugate. The disturbance has a period L in x 

a denoting the wave-number. Substitution of (6) in the Navier-Stokes equation 

(8) 
av2$ a$avz@ a~aaoagr 1 
__ + - __- - - __ = - V4$ 

at ay ax ax ay R ’ 
leads to a system of coupled ordinary differential equations for the fn. Stuart’s 
asymptotic analysis applies to a zone in the (a, R)-plane which is close to the 
neutral curve of the linear theory. In  the linear case, the time-dependence of the 
functionsf,(y, t )  is given by a factor 

) c = C , + i C i .  (9)  eiact 

We define, with Eckhaus, a small parameter e by 

€2 = a lc i l .  

Smallness of G therefore implies proximity to the neutral curve, on which ci 
vanishes. It wits shown by Stuart, that in an approximation in which only terms 
of order €3 are retained, only the f o ,  fl andf, in (6) need to be considered. These 
satisfy the following differential equations: 
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g ,  =f1-a2f1, g, =f2-4a2f2. (14) 
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Here, 9 denotes the imaginary part, dots signify differentiation with respect to 
Y, and 

As for (1 l), which gives the modification of the mean flow by the disturbance, 
we take as a first integral 

a a - .  
at O -  a Y  

fo - R - f - 2 a R 9  - (f1 f1+ 2f2f2). 

In  putting the constant of integration equal to zero in (15), the assumption was 
made (Watson 1960) that the mean pressure-gradient remains unchanged by the 
perturbation. 

The solution of the system of equations (ll), (12) and (13) is effected by Eck- 
haus through expansion in terms of the eigenfunctions $,(y) of the linear Orr- 
Sommerfeld equation: W 

f1(Y7t)  = c A?t(t)$?t(Y)' (16) 
n=l 

In particular, the eigenfunction $,(y) of the first mode, which has the neutral 
curve, satisfies the equation 

$ :V-2a2~1+a4q5,+i~~[(1  - Y ~ - C ~ ) ( $ ~ - C L ~ ~ ~ ~ ) + ~ ~ ~ ]  = 0, (17) 

$,(I) .= &(1) = $,( - 1) = $il( - 1) = 0. (18) 

(19) fo(Y, t )  = e2 14(t)12GO(Y) + O(e4), 

fAY, t )  = E24t)2Q,(Y) + 0(g4) ,  (20) 

and f,(y,t) = ~ A ~ ( t ) $ ~ ( y ) + O ( e ~ ) ,  A,(t) = O(e2) for n > 1. (21) 

and is subject to the boundary conditions 

Stuart's asymptotic analysis, valid for the zone of small e, leads to the following 
representations: 

It is also argued that the term Raf,/at in (15) may be neglected, leading to the 
integral 

(22) Q,(y) = - 2 a q ;  $Id,& 

and G,(y) = 2c~R$($,$,). (23) 

With q51(y) known as the even solution of (17) ,  6, and Go are thus even functions 
of y which can be evaluated from (22) and (23). 

Substitution of the approximations (19) $0 (23) in (13) gives 

Giv- 8a2G,+ 16a4G,+2iaR[(1 - -ZJ~-C,~)(G,-  4a2G,)+ ZG,] = i ~ R ( $ l $ l - ~ l ~ l ) .  
(24) 

Here, clr denotes the real part of the eigenvalue of (17), and in the approximations 
use was made of the relation 

dA,/dt = iaClrAl + O(e2). ( 2 5 )  

With the right-hand side of (24) a known odd function of y, G, is the odd solution 
satisfying boundary conditions like those for 4, given in (18). 

3 Fluid Mech. 29 
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Equation (12) takes on the form 

a 
~ ( j , )  = ( f : ~  - 2ay1 + a4j1 + i a ~ [ (  1 - y2) (fl - + 2f11 - R at (jl - a2jl)) 

= E3 IA1)2A1RP(y), (26) 

with P ( y )  = - ia[G,,(& - - + g1 8, 
- 3a2$1d,-&G2- 2&G2- 6a2&G2+2&G,]. (27) 

Substituting the expansion (16) into (26), we get, by virtue of (17), 

ia%($,-a2#,)A1- R($,-a2q5,) (dA,/dt) + 5 AnM(q5,) = E ~ J A ~ I ~ A ~ R P ( ~ ) .  

We now consider the system adjoint to (17): 

n=2 

(28) 

(29) 

(30) 

$iv - 2a2Jn + a4 gn + iaR[( 1 - y2 - En)( Jn - a2 r&) - 4y&] = 0,  

= Jn(1) = $n( - 1) = dn( - 1) = 0. 

It can be shown (Eckhaus 1965) that the following orthogonality relations 
hold : 

/:1 (w-a2+k)$ndy = (31) 

Hence, by multiplying (28) by $l and integrating from y = - 1 to y = 1 we get 

at = iaclA1- 2€2 IA112Alp, (33) 

where (34) 

If we take the complex conjugate of (33) 

multiply (35) by A,, (33) by Z1, and add, we get 

where /I, denotes the real part of p. 

which 
For R > R,, cli is negative, so that if p, is positive, (36) can have a solution for 

alA,I"+O, at t+m, (37) 

On the other hand, if /3, is negative, no such periodic disturbance of finite ampli- 
tude is possible in the supercritical region. 
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We have carried out the calculation and found that there indeed exists a zone 
in the (a, R)-plane where pT is positive, as shown in figure 1. 

R x 10-3 

FIGURE 1. p+. of equation (34) is positive inside the region bounded by the dashed curve. The 
zone inside the neutral curve is unstable in the linear theory. 

3. Method of Solution 
In  order to evaluate the integral pin (34), one has to  solve (29) for fil(n = 1) and 

also (17) and (24) for the functions $1 and G, which enter into P(y) ,  given in (27). 
We shall indicate here the method we used for the solution of (24) for G,. Assum- 
ing that we have solved (17) for so that the right-hand side of (24), K ( y ) ,  is 

one can solve (24) by using the Runge-Kutta method, or Nordsieck's method. 
We have found that even more effective is the method used by Thomas (1953). 
Thomas introduces an auxiliary function r(y) defined by 

h2 .. h4 
6 90 

r(y) = G,--G,+-  GIv, 

where h denotes the interval of integration. The coefficients in (40) were so chosen 
as to yield the relations 

3-2 
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Here the 6’s denote central differences, and the terms in brackets give the trunca- 
tion error. Substitution of (41)-(43) in (24) at each point 

yk = kh, h = l/n, (44) 

(45) 

leads to the recursion relations for the F k  

pk rk+, + T~ rk+, + wk rk + T~ rk-l + pk rk--2 = h 4 ~ ~ ,  

where 
h2 h4 
12 360 

Pk = l + - r k + - s k ,  

Qk = h2rk + s sk, h4 

Tk = Qk - 4Pk; Wk = 6Pk - 2Qk + h4sk, 

rk = - 801, + ZiaR( 1 - h2k2 - c ) ,  

sk = 16a4+ 4iaR - 8ia3 R( 1 - h2k2 - c). 

(46) 

(47) 

Equation (45) takes on special forms near the centre of the channel ( k  = 0 , l )  
and near the wall ( k  = n- 1,n). Because r ( y )  is an odd function of y, we have 

r-, = r,, r--2 = Fa, (51) 

~lr3+~l rz+(wl-~l ) r l  = V K ,  ( k  = I), ( 5 2 )  

~.r4+T2r3+w2r2+T2rl = h 4 ~ ,  ( I C  = 2) .  (53) 

(54) 

For the condition G,( 1) = 0, we use, with Thomas, the less accurate approxima- 

whereby the first two equations in (45) become 

Near the wall, the condition G,( 1)  = 0 gives, by (41), 

3 6 o ~ , ( i )  = r,+2 + 54r,+, + 246r, + 54r,-,+ r,-, = 0. 

tion 

leading to rn+, = r,-, + 0(h5). (56) 

Equations (54) and (56) can be used to solve for I?,+, and I?,+,, whereby the last 
two equations in (45) become 

T,-, r, + (R-, + P,-J r,-, + T,-, I?,-, + I?,-, = h4K,-, ( k  = n - i), (57) 

(58) (w, - 2461-3 r, + ( 2 ~ ,  - 1 izp,)rPz-, = o ( I% = %). 

The system of equations (45), with the special cases ( 5 2 ) ,  (53), (57) and (58), were 
solved by Gaussian elimination using an integration interval h = 0.01 and 
occasional checks with h = 0.005. 

4. Discussion of Results 
Before giving the results for /3, it is important to specify the normalization 

conventions which we have adopted. The solution q5, of (17)  was normalized by 
putting q5,(0) = 1; the normalization of the adjoint eigenfunction 6, of equation 
(29) (with n = 1) was made according to (31). 
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The function /3(a, R) given in (34) was mapped out in the region 0.5 < a < 1.2, 
4000 < R < 24,000, and the results are shown in tables 1 and 2. Since the inte- 
grand is a rapidly varying function near the wall, we have repeated the calcula- 
tion with the integrand evaluated at 200 points, instead of 100. The results agreed 
to about 1 part in 1000 for 1/31. Equally, the use of (c,,+cIi) in (24), in place of clr, 
did not change 1/31 appreciably. 

The interesting feature shown in tables 1 and 2 is that there exists a zone in the 
(a, 3)-plane where the real part of p is positive. This zone is located inside the 
dashed curve of figure 1. The asymptotic periodic solutions of finite amplitude 
predicted by Stuart for the supercritical region could therefore exist inside the 
dashed zone, just above the neutral curve. It would also follow that outside the 
dashed curve the values of /3, (negative) given in table 1 could be used to  deter- 
mine the displacement of the neutral curve towards smaller Reynolds numbers 
as a result of the finiteness of the amplitude of perturbation. This question will 
be dealt with in a forthcoming communication. 

It is well to keep in mind that Stuart’s theory is based on certain order-of- 
magnitude estimates given in equations (19), (20), (21), and on the neglect of the 
term Raf,/at in (15). The terms in (6) above n = 2 were also stated to be negligible. 
To the extent that these estimates are valid-and Eckhaus’ ( 1965) analysis sup- 
ports them-the existence of an overlapping region where p, > 0, and ci < 0, 
that we have found, lends support to Stuart’s deduction of the existence of a 
periodic disturbance of the plane Poiseuille flow which grows to a finite asymp- 
totic amplitude, as given in equations (37) and (38). 
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